Unsupervised Word Sense Induction using Distributional Statistics
نویسندگان
چکیده
Word sense induction is an unsupervised task to find and characterize different senses of polysemous words. This work investigates two unsupervised approaches that focus on using distributional word statistics to cluster the contextual information of the target words using two different algorithms involving latent dirichlet allocation and spectral clustering. Using a large corpus for achieving this task, we quantitatively analyze our clusters on the Semeval-2010 dataset and also perform a qualitative analysis of our induced senses. Our results indicate that our methods successfully characterized the senses of the target words and were also able to find unconventional senses for those words.
منابع مشابه
Noun Sense Induction and Disambiguation using Graph-Based Distributional Semantics
We introduce an approach to word sense induction and disambiguation. The method is unsupervised and knowledge-free: sense representations are learned from distributional evidence and subsequently used to disambiguate word instances in context. These sense representations are obtained by clustering dependency-based secondorder similarity networks. We then add features for disambiguation from het...
متن کاملTaxonomy Learning Using Word Sense Induction
Taxonomies are an important resource for a variety of Natural Language Processing (NLP) applications. Despite this, the current stateof-the-art methods in taxonomy learning have disregarded word polysemy, in effect, developing taxonomies that conflate word senses. In this paper, we present an unsupervised method that builds a taxonomy of senses learned automatically from an unlabelled corpus. O...
متن کاملTor, TorMd: Distributional Profiles of Concepts for Unsupervised Word Sense Disambiguation
Words in the context of a target word have long been used as features by supervised word-sense classifiers. Mohammad and Hirst (2006a) proposed a way to determine the strength of association between a sense or concept and co-occurring words—the distributional profile of a concept (DPC)—without the use of manually annotated data. We implemented an unsupervised naı̈ve Bayes word sense classifier u...
متن کامل6 Unsupervised Corpus - Based Methods for WSD 6 . 1
This chapter focuses on unsupervised corpus-based methods of word sense discrimination that are knowledge-lean, and do not rely on external knowledge sources such as machine readable dictionaries, concept hierarchies, or sense-tagged text. They do not assign sense tags to words; rather, they discriminate among word meanings based on information found in unannotated corpora. This chapter reviews...
متن کامل6 Unsupervised corpus - based methods for WSD
This chapter focuses on unsupervised corpus-based methods of word sense discrimination that are knowledge-lean, and do not rely on external knowledge sources such as machine readable dictionaries, concept hierarchies, or sense-tagged text. They do not assign sense tags to words; rather, they discriminate among word meanings based on information found in unannotated corpora. This chapter reviews...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014